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Abstract-This paper describes an analytical study of laminar natural convection heat transfer in a 
rectangular enclosure horizontally divided into fluid and porous regions. The Navier-Stokes equation 
governs the fluid motion in the fluid region, while Brinkman’s extension of Darcy’s law is assumed to hold 
within the porous region. These equations are solved using a finite-element method in the range 
10’ < Raf < IO5 and lo-’ < Da < 10m5. The experiment is also performed using a rectangular enclosure 
filled with silicone oil and glass beads. It is shown that the flow pattern, temperature distribution and Nusselt 

number obtained from the numerical calculation satisfactorily predict the experimental data. 

1. INTRODUCTION 

NATURAL convection induced by buoyancy effects in an 
enclosed space filled either with a fluid or a fluid- 
saturated, porous medium has attracted considerable 
attention over the past decade [l-5]. Interest in this 
fundamental topic has been fuelled by applications 
to many real-life situations ranging from thermal 
insulation engineering to geothermal engineering. 
Recently various studies on natural convection in 
either multiple fluid layers or porous layers have been 
developed to determine the effect of inhomogeneity on 
the heat transfer [&lo]. However, the investigation of 
natural convection in a system consisting of both a fluid 
layer and a fluid-saturated, porous layer is quite 
limited. 

Somerton and Catton [l l] presented the analytical 
prediction of the onset of convection for a system con- 
sisting ofa volumetrically heated, porous medium satu- 
rated with and overlaid with a fluid, heated or cooled 
from below. Tong and Subramanian [12] analyzed 
natural convection in rectangular enclosures that are 
vertically divided into a region filled with a fluid and a 
region filled with a fluid-saturated, porous medium. 
Two regions are separated by an impermeable wall 
without the thermal resistance and both side walls of 
the enclosure are heated and cooled, respectively. They 
reported that even the enclosure partially filled with a 
porous medium has a heat transfer rate identical to that 
of a fully porous enclosure when the porous portion of 
the enclosure is more than about 0.5. Nishimura et al. 
[ 133 experimentally investigated natural convection in 
rectangular enclosures heated and cooled from a side, 
respectively. The upper part of the enclosure is filled 
with water and the lower part is filled with a water- 
saturated, porous medium of glass beads as shown in 
Fig. 1. Nishimura er al. presented the heat transfer 
correlation with a function of the porous portion of the 

enclosure and also discussed the natural convection 
mechanism by the flow visualization and the tem- 
perature distribution in the enclosure. 

In this paper, we analyze natural convection for the 
same system as that of our previous experimental study 
[13]. The two-dimensional, Navier-Stokes equation 
governs the fluid motion in the fluid region, while 
Brinkman’s extension of Darcy’s law [ 143 is assumed to 
hold within the porous region. These equations have 
been solved using a finite-element method, and the 
effects of Rayleigh number and Darcy number on the 
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FIG. 1. Schematic diagram of enclosure partially filled with a 
porous medium. 
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NOMENCLATURE 

C,f specific heat of the fluid 
Da Darcy number, K/W’ 

Y gravitational acceleration 

H height of the enclosure 
H’ height of the porous region 

h heat transfer coefficient 
Nu, Nusselt number, h W/l, 
Nu, Nusselt number, h W/l, 
fir Nusselt number when natural convection 

occurs independently in the fluid and 
porous regions 

NUT Nusselt number based on fluid thermal 
conductivity for a fully fluid enclosure 
with an aspect ratio of (H - H’)/W 

Nu,* Nusselt number based on effective 
thermal conductivity for a completely 
porous enclosure with an aspect ratio of 

H’/W 
P dimensionless pressure, pW’/(p,u:) 

P pressure 
Pr, Prandtl number of the fluid 

Ra, Rayleigh number, gp(Th - T,)W3/(C(,vr) 
Raf Rayleigh number, Ra,Da 
Ra, Rayleigh number, g/3( Th - T,) W3/(afvf) 
S size of secondary circulation because of 

the numerical error 

T temperature 

T, temperature at the cold wall 

r, temperature at the hot wall 

u dimensionless vertical velocity, u W/cr, 
U vertical velocity 

V dimensionless horizontal velocity, uW/m, 
V horizontal velocity 
W width of the enclosure 

X dimensionless vertical coordinate, x/W 

X vertical coordinate 
Y dimensionless horizontal coordinate, y/W. 

Greek symbols 

a, thermal diffusivity of the porous medium, 

U(&,r) 
CQ thermal diffusivity of the fluid, &/(prC,r) 

B volumetric expansion coefficient 

i shear stress 
e dimensionless temperature, 

(T- r,)l(T, - T,) 
permeability 

% effective thermal conductivity of the 
porous medium 

4 thermal conductivity of the fluid 

Pf viscosity of the fluid 

v f kinematic viscosity of the fluid 

Pf density of the fluid 

7 dimensionless shear stress, <W’/(cr,p,) 
Y dimensionless streamfunction, $/ur 
Y’, circulation in the fluid region only 
Y’, circulation over the entire region 

ti streamfunction 
n dimensionless vorticity, w W’/u, 
w vorticity 
AXi dimensionless mesh size in the porous 

region next to the interface 

6 thickness of a thin region near the 
interface in which the flow in the porous 
region is dominated by viscous force. 

Subscripts 
f fluid region 

P porous region. 

heat transfer are discussed. A comparison between 
calculation and experiment is also performed. 

2. PROBLEM FORMULATION 

2.1. Governing equations 
We consider a two-dimensional, rectangular 

enclosure of height H and width w horizontally 
divided into the fluid and porous regions as shown in 
Fig. 1. The fluid is assumed to have constant properties, 
excluding density in a buoyant term, which is assumed 
to vary linearly with temperature, i.e. the Boussinesq 
approximation is utilized. The porous portion of the 
enclosure is expressed as H’/H and the interface 
between fluid and porous regions remains horizontal. 
The upper and lower walls of the enclosure are 
insulated, while the vertical walls of the enclosure are 
isothermal ; the right-hand side wall is at temperature 
Th and the left-hand side at T,, where Th > T,. 

The Navier-Stokes equation and Darcy’s law have 
been utilized for the fluid motion of the fully-fluid 
enclosure and for that of the fully-porous enclosure, 
respectively. If the present analysis uses Darcy’s law for 
the porous region, then velocity and shear stress are 
discontinuous at the interface. So we use the Brinkman 
extension of Darcy’s law which physically forces a 
continuity in velocity and shear stress. Such a treatment 
has already been utilized for flow analysis of a viscous 
fluid past a permeable body [15, 161. 

With the assumptions stated above, the governing 
equations for this problem are expressed in the 
following non-dimensional form in terms of stream- 
function, vorticity and temperature : 

Fluid region 

uf 2 + V, z = PrfV2Rf - Ra,Pr, $ (1) 

V2Y’, = -0, (2) 



Natural convection in a rectangular enclosure 891 

Porous region 

a0 
- (Pr,/Da)R, - Ra,Pr, 2 

8Y 
(4) 

v+‘, =-R, (5) 

u, 2 + VP g = &/l,)V28,. (6) 

The non-dimensional boundary conditions at four 
walls of the enclosure are 

at X=O:Y’,=O, a,=-V’Y,, 130,/aX=O 

(7) 

at X = H/W: ‘I’, = 0, R, = -V’Y’,, 80,/8X = 0 

(8) 

at Y=O:Yp=Y’,=O, Q,=-V’Y,, 

n, = -v2Yf, ep = 8, = 0 (9) 

at Y=l:Y,=Y’,=O, R,=-V’Y’,, 

n, = -VZY’,, ep = Bf = 1. (10) 

At the interface (X = W/W), the boundary conditions 
can not be specified explicitly for streamfunction, 
vorticity and temperature. Hence, at X = H’/w six 
continuity conditions will be specified in the following 
form, coupling the fluid region to the porous region : 

Uf = u, 

v, = VP 

Tf = Tp 

P, = P, 

of = ep 

ae,/ax = (n,/n,) ae,/ax. 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Equations (11x14) can be transformed in terms of 
variables Y’,, Y’,, Q and R, to obtain an equivalent set 
of equations, namely 

Y’, = Y’, (17) 

aTflax = ay',jax (18) 

sz,=ql (19) 

an,/ax = acqax- &/Da. (20) 

Derivation of these equations is described in the 
literature [17]. Equations (lH6) together with the 
boundary conditions [equations (7)-(10) and (Is)- 
(20)] complete the problem definition. These model 
equations have the advantage of being fully predictive, 
i.e. there is no need for an experimental fit of any 
parameter. 

The solution of this problem is dependent on the 

following parameters : HI/H, 1,/l,, H/K Da, Ra, and 

Pr,. The aspect ratio, the thermal conductivity ratio, the 
porous portion of the enclosure and Prandtl number 
were held constant (H/W = 6, &/A, = 1.0, H’/H = 0.5 
and Pr, = 10) for all cases considered, since this study 
is concerned with the development of mathema- 
tical model rather than the details of a parametric 
study. Other parameters were varied in the range 
lo3 < Ra, < lo5 and 10m3 < Da < lo-‘. 

2.2. Validity of numerical results 
Numerical solutions of equations (l)-(lO) and (15k 

(20) were obtained through use of the finite-element 
method. The solution technique is well described in the 
literature [17] and has been widely used for natural 
convection problems [l&20]. The analytical domain 
was initially discretized using a uniform 60 x 20 mesh of 
triangular elements. 

Figure 2 shows a comparison of the present 
numerical results and those previously reported; this 
tests the solution technique. For a fully-fluid enclosure 
[Fig. 2(a)], at high Rayleigh numbers, the present 
results are in excellent agreement with the correlation 
by Churchill [21], which is a generalization of the laminar 
boundary-layer solution of Bejan [22] including the 
effect of Prandtl number. In Fig. 2(b), the comparison is 
for a fully-porous enclosure. The present results agree 
with those of Bankvall [23]. 

However, for the case of an enclosure divided into 
fluid and porous regions, a discretization error may 
appear through the use of this mesh size. In order to test 
the effect of mesh size, a smaller mesh size in the vertical 
direction was employed near the interface, where a 
sharp shear stress occurs and where the number of 

H’/H = 0, fluid layer 
H/W=6 

A Numerical solutions (FEM) 

- Churchill’s Eq. (boundary-layer flow) 

g 4 
._ 

H’/H = I, porous layer 
H/W=6 

A Numerlcol solutions (FEM) 

FIG. 2. Comparison of the present calculated Nusselt numbers 
and those previously reported. 
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meshes was changed from 60 to 110, but the number of 
mesh in the horizontal direction was kept constant. 

For mesh variation, the temperature field was similar 
for all mesh sizes, but the flow field was noticeably 
different. When the dimensionless mesh size next to the 
interface, AXi is larger than a critical value, the fluid in 
the fluid region never penetrates into the porous 
medium, inducing a secondary circulation located at 
the upper zone in the porous region, which is due to the 
discretizationerror, However, whenAXiis smaller than 
the critical value, a part of the fluid in the fluid region 
penetrates into the porous region and therefore the 
secondary circulation disappears. 

Figure 3 shows the relationship between the size of 
secondary circulation and the mesh size next to the 
interface. The critical value of AXi becomes the smaller 
for the smaller Darcy number. For an example, the 
criticalvaluefor Da = lo-‘isabout 10-3,whichisvery 
small. The reason for this is considered as follows. 

The ratio of viscous force to Darcy’s resistance in 
Brinkman’s extension of Darcy’s law is represented in 
terms of the width of the enclosure as 

P’rV2V Pf”lW2 
-N 

(W/K) W/K 
-+== Da. (21) 

When Da is less than 10m3, the viscous force can be 
neglected except in a region near the interface. 
However, the flow is dominated by viscous force rather 
than Darcy’s resistance in the porous region next to the 
interface because of a significant variation of the 
velocity. 

If 6 is taken as the thickness of the region near the 
interface in which the flow in the porous region is 
dominated by viscous force, changing from W to 6 in 
equation (21) and assuming that the ratio of viscous 
force to Darcy’s resistance is of the order of 1, 6 is 
roughly estimated as 

s/w-&G (22) 

Thus, when AXi is larger than *, a remarkable error 
probably appears in the numerical solution. In fact, the 

0 60 x 20 (AX, ~0.1 ) 
0 a 94x 20 (AX, .a0151 

q 98xZO(AX,~O.C05) 

v lO2x2OlAX, .0.001) 8 

-10 
o llOx2O(AX, .0.ooo5~ 

-6o ou 
Y 

FIG. 4. Effect of mesh size on the vorticity at the interface. 

flow patterns significantly change near the values 
estimated by equation (22) as shown in Fig. 3. 

Figure 4 shows the vorticity distributions at the 
interface for mesh variation. As AX, becomes smaller 
the vorticity profile and its value scarcely change for 
mesh variation. The vorticity for a non-uniform 102 
x 20 mesh (AXi = 0.001) is almost equal to that for a 
non-uniform 110 x 20 mesh (AXi = 0.0005). Also the 
value ofstreamfunction is almost identical for these two 
mesh sizes, but not shown here. Hence the smaller mesh 
size with 110 x 20 as shown in Fig. 5 was used in all the 
calculation runs. 

3. RESULTS AND DISCUSSION OF NUMERICAL 

CALCULATIONS 

3.1. Flow and temperaturejelds 
Since the flow pattern is the same for Darcy numbers 

considered here, the streamlines in the case of Da 
= lo- 3 are shown in Fig. 6. For all Rayleigh numbers, 

Ra = IO3 Da 
A l63 

0 lo+ 

0 10-S 

Ax, 

FIG. 3. Effect of mesh size on the flow pattern. 
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ae/ax=o 

X 

t 

FIG. 5. Finite-element mesh for calculation 

mostofthelluidmovingdownwardadjacenttothecold 
wall in the fluid region goes away from the wall at x/H 
= 0.5 and then moves along the interface towards the 
hot wall. However, a part ofthe fluid penetrates into the 
porous medium. Thus, there are two flow modes for this 
system: one is a circulation rotating counter-clock- 
wise in the fluid region only and the other is a circu- 
lation with the same rotation over the entire region. 
These flow modes have been also observed in the 
range5x106<Ra,<3x107forDa=3.5x10-6and 
1,/A, = 1.28 in previous experiments [13]. 

The circulation rate in the fluid region only, Y’, is 
almost identical for Darcy numbers considered here, 
but increases with the Rayleigh number. While the 
circulation rate over the entire region, Y, decreases 
with decreasing the Darcy number. Figure 7 shows the 

ratio of the circulation rate over the entire region to 
that in the fluid region only. This ratio means a rate 
of flow penetration from the fluid region into the 
porous region. The circulation ratio increases with 
the Rayleigh number, but its relation is not linear. In 

the range of Rayleigh number considered here, the 
circulation ratio decreases at a rate which corresponds 
to a decrease in the Darcy number. 

Figure 8 shows the variation of isotherms with the 

Darcy number at Ra = 105. The isotherms are almost 
identical for any Darcy number in the fluid region, but 
are different in the porous region. This difference is 

dependent on the variation of the flow penetration rate 
with the Darcy number. 

3.2. Heat transfer rates for various Darcy numbers 
In the present study, the average Nusselt number is 

defined as 

Nu, = 
actual heat transfer rate 

heat transfer rate by conduction when the 
entire enclosure is filled with the fluid alone 

(211 

and is given in terms of variables of this study as follows 

(iW,/a Y) dX 

s H/W 

+ (83,/13Y) dX (221 
N’/W Y=o 

where the temperature gradient is evaluated at the cold 
wall, Y = 0. 

Figure 9 shows the relation between the Nusselt 

number and the Rayleigh number. The Nusselt number 
makes little difference for all Darcy numbers studied 
and it is smaller than that for the fully-fluid enclosure 
indicated by the solid line in this figure at high Rayleigh 
numbers. Normally the Nusselt number increases with 
the Darcy number and in turn with the permeability. 
However, the numerical results are contrary to this 
expectation. So the local Nusselt numbers at the cold 
wall are shown in Fig. 10 for Da = 10e3 and lo-‘. The 
local Nusselt number for Da = 1O-3 is larger than that 
for Da = lo- ’ in the fluid region, while it is smaller in 
the porous region. The difference in the local Nusselt 
number for various Darcy numbers is due to a 
remarkable difference in the flow penetration rate as 
shown in Fig. 7. However, this difference is almost 
cancelled when the local Nusselt number is averaged 
along the cold wall to obtain the averaged Nusselt 
number. 

For such a system consisting of both the fluid and 
porous regions, the interaction of the natural 
convection for each region has a strong effect on the 
flow and temperature fields. In order to estimate 
quantitatively this interaction, we calculate the 
apparent Nusselt number fi, when the natural 
convection occurs independently in the fluid and 
porous regions, corresponding to that when an 
impermeable and adiabatic partition is placed at the 
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FIG. 6. Variation of streamlines with Rayleigh number for Da = 10e3. 

5 
Ru-IO-' 

X,/X,-I 
DO 

_.- 10-3 

__- 10-4 ./’ 

- a5 ./ 

/ 

I- 

_I- 
/- 

-.- 

0 
, 

, 
/ 

/ 

c/ RR 
.’ 

____-- 
C- 

/ 

/ 

/ 

IO! 

FIG. 7. Variation offlow penetration with Rayleigh number for 
three different Darcy numbers. 
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interface. Nu, is calculated by the following equation 

G, = (H’/H)(I~,/I,)Nu,*+(l -H’/H)Nu:. (23) 

Figure 11 shows the ratio of Nu, to Nu,. This ratio of 
Nusselt number decreases with increasing the Rayleigh 
number. In particular this characteristic becomes 
significant with an increase in the Darcy number. Thus 
a decrease in the Nusselt number ratio with increasing 
Rayleigh number is closely related to the flow penetration 
rate as shown in Fig. 7. 

4. EXPERIMENTS 

Since the experimental equipment and procedure 
have already been described comprehensively [13], 
they will be reviewed here only briefly. A rectangular 
enclosure, 5 cm in width and 30 cm in height, whose 
opposing vertical walls were kept at different tem- 
peratures while the upper and lower walls were insu- 
lated was used. Silicone oil (Pr, = 8000) was used as 
the fluid, and the porous medium was composed of 
glass beads of an average diameter of 3.1 mm. The 
experiment was carried out for the porous portion of 
the enclosure H’/H = 0.5 in the range 5 x lo4 < Ra, 
< 3 x 105. We observed the flow pattern by the tracer 
consisting of iodine solution or small particles, and also 
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FIG. 8. Variation of isotherms with Darcy number for Ra = 105. 

measured the temperature distribution and the heat 
transfer rate through the enclosure. 

Figure 12(a) shows a photograph of the flow 
visualization in the fluid region. A circulation over the 
fluid region and twin secondary circulations are clearly 
recognizable. On the other hand, in the porous region, 
the tracer consisting ofiodine solution injected through 
a port of the lower wall of the enclosure spread over the 
porous region at a low speed and thus the flow in the 
porous region is not clearly recognizable. Figure 12(b) 
shows the corresponding numerical streamlines by the 
analytical model described above. The agreement 

- FULLY fluld enclosure 

Do 

A 1O-3 

FIG. 9. Variation of Nusselt numbers with Rayleigh number FIG. 10. Local Nusselt number distributions for two different 
for three different Darcy numbers. Darcy numbers. 

between the experiment and the analysis is good in the 
fluid region but is not clear in the porous region. The 
reason for this is that the flow rate in the porous region 
is much smaller than that in the fluid region, as seen 
from the ratio of Y’, to Y’, indicated in Fig. 12(b). 

Figure 13 shows a comparison of experimental and 
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FIG. 11. Variation of Nusselt number ratios with Rayleigh 
number for three different Darcy numbers. 

numerical temperature distributions at each horizontal 
section in the enclosure. The numerical distributions 
are found to be in very good agreement with the 
experimental data for both the fluid and porous 
regions. The temperature distribution near the lower 
wall (x/W = 0.02) is identical with that of the heat 
conduction. This result indicates that the flow rate in 

Y/W 

Conditions A Fluad regm 
A Porous region 

H/W=6, b/‘/H=05 

RCJ, = I x 105, Pr, = 8000 

Do = 3.5 x IO+, x,/x, = 2.64 

the porous region is extremely small. FIG. 13. Comparison of experimental and calculated 
Figure 14 shows a comparison of experimental and temperature distributions. 

Fluid region 

H/W= 6, b/%=0.5, f?a," I x 105, 
P/-=8000, Da" 3.5x lO-6 

(a) 
(b) 

0.98 

0.52 

0.48 

=I.67 x lO-3 

FIG. 12. Comparison of experimental and calculated flow patterns. 
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FIG. 14. Comparison of experimental and calculated Nusselt 
numbers. 

numerical Nusselt numbers. The agreement between 
the experiment and the numerical solution is good ; the 
experimental data are also in agreement with the 
correlation indicated by the dotted line-an extrapola- 
tion of the correlating equation for higher Rayleigh 
numbers(7.3 x 10’ < Ra, < 2.6 x 10’)presented by the 
previous experimental study [13]. 

5. CONCLUSIONS 

Natural convection heat transfer in a rectangular 
enclosure horizontally divided into fluid and porous 
regions was analyzed numerically. The Navier-Stokes 
equation and Brinkman’s equation were used for the 
fluid motion in the fluid region and for that in the 
porous region, respectively. These equations were 
solved by the finite-element method. The flow and 
temperature fields varied with the Rayleigh number 
and the Darcy number. In particular, the rate of flow 
penetration from the fluid region into the porous region 
considerably varied with the Darcy number. The 
numerical results agreed well with the experiments. 

In this study, the validity of the analytical model has 
not yet been completely performed, because the 
comparison between the analytical model and the 
experiment is made under a condition in which the heat 
transfer in the porous region is mainly dominated by 
heat conduction. In the future it is hoped that the 
numerical calculation will be expanded to higher 
Rayleigh numbers than those studied in this work. 
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ANALYSE NUMERIQUE DE LA CONVECTION NATURELLE DANS UNE ENCEINTE 
RECTANGULAIRE DIVISEE HORIZONTALEMENT EN DES REGIONS POREUSE ET 

FLUIDE 

R&urn&On dtcrit une itude analytique de la convection naturelle dans une enceinte rectangulaire diviske 
horizontalement en deux rigions poreuse et fluide. L’iquation de Navier-Stokes gouverne le mouvement du 
fluide dans la rkgion du fluide, tandis que l’extension de la loi de Darcy est supposCe Qtre valable dans la rtgion 
poreuse. Ces Equations sont r&.olues par une methode aux &ments finis dans le domaine lo3 < Ra < lo5 et 
10e3 < Da < lo- ‘. L’expirience est conduite pour une enceinte rectangulaire couplee avec du silicone et des 
billes de verre. On montre que la configuration de l’Ccoulement, la distribution de temptrature et le nombre de 

Nusselt obtenus par le calcul numerique pridisent correctement les donnkes exphimentales. 

NUMERISCHE UNTERSUCHUNG DER NATijRLICHEN KONVEKTION IN EINEM 
RECHTECKIGEN HOHLRAUM MIT WAAGERECHTER TRENNUNG ZWISCHEN 

SCHUTTUNG UND FLUID 

Zusammenfassung-Der Artikel beschreibt eine analytische Untersuchung des Wirmeiibergangs bei lami- 
narer natiirlichen Konvektion in einem rechteckigen Hohlraum mit horizontaler Trennung von Schiittung 
und Fluid. Die Navier-Stokes-Gleichungen beschreiben die Bewegung des Fluids im Gebiet des reinen 
Fluids, wlhrend Brinkman’s Erweiterung des Darcy-Gesetzes als giiltig fiir die Schiittung angenommen 
wird. Die Gleichungen werden mit einem Finite-Elemente-Verfahren gel&t im Bereich von lo3 < Rat < lo5 
und 10-j < Da < 10e5. Eine experimentelle Untersuchung wird ebenfalls durchgefiihrt an einem rech- 
teckigen Behglter, der mit Silikoniil und Glaskugeln gefiillt ist. Es wird gezeigt, daL3 das StrBmungsbild, 
die Temperaturverteilung und die Nusselt-Zahl, die man aus den numerischen Berechnungen erhllt, die 

experimentellen Werte zufriedenstellend vorhersagen. 

‘4MCJIEHHbIn AHAJII43 ECTECTBEHHOti KOHBEKL(kiM B IIP8MOYTOJIbHOM 
06’bEME C I-OPI430HTAJIbHbIM AEJIEHkiEM HA XHAKYIO M IIOPMCTYIO OIXIACTM 

AHHorauHn-AHanATIlrecK~ H-Jy’4aeTCa JIaMHHapHbIfi eCTeCTBeHI,OKOHBeKTABHbIti TenJIOWpeHOC B npa- 

MOyrOJIbHOii IIOJIOCTB C ~OPA30HTaJIbHbIM ~eJIeHBk?M Ha XWAKylO R nO,XlCTyIO o6nacTn. flBli,KKeHHe B 

o6nacTe XHAKOC~~~ OnpeAenneTca ypaBHeHaeM HaBbe-CTOKCa. B rIOpHCTOii o6nacTa npeMeHReTca 

o6o6meHne EpHHKMaHa AJIX 3aKOHa AapCA. YpaBHeHW pemaKXCa MeTOAOM KOHeYHbIX 3JIeMeHTOB IIpH 

lo3 < Ra, < 10’ )i 10-j < Da < 10-5. 3KCIIepW.feHTbI IIPOBOASITCR C IIpRMOyrOnbHOf, eMKOCTbE0, 

3aIIOJIHeHHOii CAJIAKOHOBUM MXnOM U CTeKJIRHHbIMB “IapHKaMH. nOKa3aH0, ST0 paCCWTZ,HHbIe p‘2KtaM 

Te’IeHEiR, PaCIIpeAeJIeHAe TeMIIepaTypbI Ii WiCJIO HyCCeJIbTa ,‘AOBJI’ZTBOpHTWIbHO COOTBeTCTB,‘IOT 3KCtIe- 

PHMeHTaAbHbIM ABHHUM. 


