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Abstract—This paper describes an analytical study of laminar natural convection heat transfer in a
rectangular enclosure horizontally divided into fluid and porous regions. The Navier-Stokes equation
governs the fluid motion in the fluid region, while Brinkman’s extension of Darcy’s law is assumed to hold
within the porous region. These equations are solved using a finite-clement method in the range
10° < Ra, < 10° and 107° < Da < 1075, The experiment is also performed using a rectangular enclosure
filled with silicone oil and glass beads. It is shown that the flow pattern, temperature distribution and Nusselt
number obtained from the numerical calculation satisfactorily predict the experimental data.

1. INTRODUCTION

NATURAL convection induced by buoyancy effectsin an
enclosed space filled either with a fluid or a fluid-
saturated, porous medium has attracted considerable
attention over the past decade [1-5]. Interest in this
fundamental topic has been fuelled by applications
to many real-life situations ranging from thermal
insulation engineering to geothermal engineering.
Recently various studies on natural convection in
either multiple fluid layers or porous layers have been
developed to determine the effect of inhomogeneity on
the heat transfer [6-10]. However, the investigation of
natural convection in a system consisting of both a fluid
layer and a fluid-saturated, porous layer is quite
limited.

Somerton and Catton [11] presented the analytical
prediction of the onset of convection for a system con-
sisting of a volumetrically heated, porous medium satu-
rated with and overlaid with a fluid, heated or cooled
from below. Tong and Subramanian [12] analyzed
natural convection in rectangular enclosures that are
vertically divided into a region filled with a fluid and a
region filled with a fluid-saturated, porous medium.
Two regions are separated by an impermeable wall
without the thermal resistance and both side walls of
the enclosure are heated and cooled, respectively. They
reported that even the enclosure partially filled with a
porous medium has a heat transfer rate identical to that
of a fully porous enclosure when the porous portion of
the enclosure is more than about 0.5. Nishimura et al.
[13] experimentally investigated natural convection in
rectangular enclosures heated and cooled from a side,
respectively. The upper part of the enclosure is filled
with water and the lower part is filled with a water-
saturated, porous medium of glass beads as shown in
Fig. 1. Nishimura et al. presented the heat transfer
correlation with a function of the porous portion of the
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enclosure and also discussed the natural convection
mechanism by the flow visualization and the tem-
perature distribution in the enclosure.

In this paper, we analyze natural convection for the
same system as that of our previous experimental study
[13]. The two-dimensional, Navier—Stokes equation
governs the fluid motion in the fluid region, while
Brinkman’s extension of Darcy’slaw [14] is assumed to
hold within the porous region. These equations have
been solved using a finite-element method, and the
effects of Rayleigh number and Darcy number on the
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FiG. 1. Schematic diagram of enclosure partially filled with a
porous medium.
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specific heat of the fluid

Da Darcy number, k/W?

g gravitational acceleration

H  height of the enclosure

H’  height of the porous region

h  heat transfer coefficient

Nusselt number, hW/A,

Nusselt number, hW/ A,

Nusselt number when natural convection

occurs independently in the fluid and

porous regions

Nu¥ Nusselt number based on fluid thermal
conductivity for a fully fluid enclosure
with an aspect ratio of (H—H')/W

Nu} Nusselt number based on effective
thermal conductivity for a completely
porous enclosure with an aspect ratio of
H/W

P dimensionless pressure, pW?/(psaf)

p  pressure

Pr; Prandtl number of the fluid

Ra, Rayleigh number, gB(T;, — T,)W3/(o..v¢)
Ra* Rayleigh number, Ra.Da
Ra, Rayleigh number, gB(T, — T.)W3/(0vy)

S size of secondary circulation because of
the numerical error

temperature

temperature at the cold wall
temperature at the hot wall
dimensionless vertical velocity, uW /o,
vertical velocity

dimensionless horizontal velocity, vW /o
horizontal velocity

width of the enclosure

dimensionless vertical coordinate, x/W
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NOMENCLATURE

x  vertical coordinate
Y  dimensionless horizontal coordinate, y/W.

Greek symbols
o, thermal diffusivity of the porous medium,
Aef(peCre)
o thermal diffusivity of the fluid, 4;/(p:C,)
B volumetric expansion coefficient
¢ shear stress
@  dimensionless temperature,

(T-THT,—To)

permeability

effective thermal conductivity of the

porous medium

J¢  thermal conductivity of the fluid

ye  viscosity of the fluid

v  kinematic viscosity of the fluid

p¢  density of the fluid

T dimensionless shear stress, {W? /(o)

¥  dimensionless streamfunction, /o

¥, circulation in the fluid region only

¥, circulation over the entire region

Y streamfunction

Q  dimensionless vorticity, oW?/«

w  vorticity

dimensionless mesh size in the porous

region next to the interface

6  thickness of a thin region near the
interface in which the flow in the porous
region is dominated by viscous force.

Subscripts
f fluid region
p  porous region.

heat transfer are discussed. A comparison between
calculation and experiment is also performed.

2. PROBLEM FORMULATION

2.1. Governing equations

We consider a two-dimensional, rectangular
enclosure of height H and width W, horizontally
divided into the fluid and porous regions as shown in
Fig. 1. The fluid is assumed to have constant properties,
excluding density in a buoyant term, which is assumed
to vary linearly with temperature, i.e. the Boussinesq
approximation is utilized. The porous portion of the
enclosure is expressed as H'/H and the interface
between fluid and porous regions remains horizontal.
The upper and lower walls of the enclosure are
insulated, while the vertical walls of the enclosure are
isothermal ; the right-hand side wall is at temperature
T, and the left-hand side at T, where T, > T..

The Navier-Stokes equation and Darcy’s law have
been utilized for the fluid motion of the fully-fluid
enclosure and for that of the fully-porous enclosure,
respectively. If the present analysis uses Darcy’s law for
the porous region, then velocity and shear stress are
discontinuous at the interface. So we use the Brinkman
extension of Darcy’s law which physically forces a
continuity in velocity and shear stress. Such a treatment
has already been utilized for flow analysis of a viscous
fluid past a permeable body [15, 16].

With the assumptions stated above, the governing
equations for this problem are expressed in the
following non-dimensional form in terms of stream-
function, vorticity and temperature:

Fluid region
0Q 0Q 00
Ugy + Vioy = PrV3Q;—Ra.Pr; a—; (1)
V3 = — O 2
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30, 00,

Ufa VfaY V26;. 3)
Porous region
Q, Q,
U,—2+V,—2=PrvVQ,
Pox TPy
a0,
—(Pr¢/Da)Q2,— Ra;Pr; v 4
VY, =-Q, (%)
40, é0, 2
U, ﬁ +V, 5)7 = (A./A4)V?0,. (6)

The non-dimensional boundary conditions at four
walls of the enclosure are

at X=0:¥,=0, Q,=—V%¥, 40,/0X=0
™
at X=H/W:¥ =0, Q=—V¥, 086/0X =0
@®

at Y=0:¥, =¥ =0, Q =—V¥,
Q=—-VW¥, 0,=6,=0 (9)

at Y=1:¥,=¥,=0, Q =-V2¥,
Q =-V¥, 6,=6,=1 (10)

At the interface (X = H'/W), the boundary conditions
can not be specified explicitly for streamfunction,
vorticity and temperature. Hence, at X = H'/W, six
continuity conditions will be specified in the following
form, coupling the fluid region to the porous region:

U =U, (11)
=" (12)
=T (13)
P =P, (14)
0, =0, (15)
30,/0X = (A/A) 36,/0X. (16)

Equations (11)(14) can be transformed in terms of
variables ¥, ¥, Q; and Q, to obtain an equivalent set
of equations, namely

¥ =¥, (17
OW,/0X = oW, /0X (18)

o -Q, (19)

00;/6X = 0Q,/6X — V,/Da. (20)

Derivation of these equations is described in the
literature [17]. Equations (1)}-(6) together with the
boundary conditions [equations (7)-(10) and (15}
(20)] complete the problem definition. These model
equations have the advantage of being fully predictive,
i.e. there is no need for an experimental fit of any
parameter.

The solution of this problem is dependent on the
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following parameters: H'/H, A./A;, H/W, Da, Ra; and
Pr;. The aspect ratio, the thermal conductivity ratio, the
porous portion of the enclosure and Prandtl number
were held constant (H/W = 6, A/, = 1.0, H/H = 0.5
and Pr; = 10) for all cases considered, since this study
is concerned with the development of mathema-
tical model rather than the details of a parametric
study. Other parameters were varied in the range
103 < Ra; < 10°and 1073 < Da < 1075,

2.2. Validity of numerical results

Numerical solutions of equations (1)}10) and (15}
(20) were obtained through use of the finite-element
method. The solution technique is well described in the
literature [17] and has been widely used for natural
convection problems [18-20]. The analytical domain
was initially discretized using a uniform 60 x 20 mesh of
triangular elements.

Figure 2 shows a comparison of the present
numerical results and those previously reported; this
tests the solution technique. For a fully-fluid enclosure
[Fig. 2(a)], at high Rayleigh numbers, the present
results are in excellent agreement with the correlation
by Churchill [21], which is a generalization of the laminar
boundary-layer solution of Bejan [22] including the
effect of Prandtl number. In Fig. 2(b), the comparison is
for a fully-porous enclosure. The present results agree
with those of Bankvall [23].

However, for the case of an enclosure divided into
fluid and porous regions, a discretization error may
appear through the use of this mesh size. In order to test
the effect of mesh size, a smaller mesh size in the vertical
direction was employed near the interface, where a
sharp shear stress occurs and where the number of

H7H =Q, fluid layer
H/W =6
A Numerical solutions (FEM)
=== Churchill's Eq. {boundary-layer flow)

5
3
2
A
I L J
103 10% 10°
(a) Ra,
10 ——
H'/H =1, porous layer
H/W=6
A Numerical solutions (FEM)
e - Bankvall's solution (FDM)
3
| L
10 100
»*
(b) Ry, =Ra, Do

F1G. 2. Comparison of the present calculated Nusselt numbers
and those previously reported.
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meshes was changed from 60 to 110, but the number of
mesh in the horizontal direction was kept constant.

For mesh variation, the temperature field was similar
for all mesh sizes, but the flow field was noticeably
different. When the dimensionless mesh size next to the
interface, AX is larger than a critical value, the fluid in
the fluid region never penetrates into the porous
medium, inducing a secondary circulation located at
the upper zone in the porous region, which is due to the
discretizationerror, However, when AX;issmaller than
the critical value, a part of the fluid in the fluid region
penetrates into the porous region and therefore the
secondary circulation disappears.

Figure 3 shows the relationship between the size of
secondary circulation and the mesh size next to the
interface. The critical value of AX; becomes the smaller
for the smaller Darcy number. For an example, the
critical valuefor Da = 10 %isabout 10~ 3, whichis very
small. The reason for this is considered as follows.

The ratio of viscous force to Darcy’s resistance in
Brinkman’s extension of Darcy’s law is represented in
terms of the width of the enclosure as

wV¥  p/W? ok

~— = Da.
o)~ e WO

2

When Da is less than 1073, the viscous force can be
neglected except in a region near the interface.
However, the flow is dominated by viscous force rather
than Darcy’s resistance in the porous region next to the
interface because of a significant variation of the
velocity.

If ¢ is taken as the thickness of the region near the
interface in which the flow in the porous region is
dominated by viscous force, changing from W to é in
equation (21) and assuming that the ratio of viscous
force to Darcy’s resistance is of the order of 1, § is
roughly estimated as

8/W ~ /Da

Thus, when AXislarger than ./ Da,aremarkable error
probably appears in the numerical solution. In fact, the
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F1G. 4. Effect of mesh size on the vorticity at the interface.

flow patterns significantly change near the values
estimated by equation (22) as shown in Fig. 3.

Figure 4 shows the vorticity distributions at the
interface for mesh variation. As AX; becomes smaller
the vorticity profile and its value scarcely change for
mesh variation. The vorticity for a non-uniform 102
x 20 mesh (AX; = 0.001) is almost equal to that for a
non-uniform 110 x 20 mesh (AX; = 0.0005). Also the
value of streamfunction is almost identical for these two
mesh sizes, but not shown here. Hence the smaller mesh
size with 110 x 20 as shown in Fig, 5 was used in all the
calculation runs.

3. RESULTS AND DISCUSSION OF NUMERICAL
CALCULATIONS

3.1. Flow and temperature fields

Since the flow pattern is the same for Darcy numbers
considered here, the streamlines in the case of Da
= 1073 are shown in Fig. 6. For all Rayleigh numbers,

0.5
Ra=10° Da
0al a 10
’ o 0o
Fluid region o 1078
o3 £ T
B c h
E - Interface
«

Porous region

e |

0 5

3/W(Da=100) 8/W(DA 0 8/W(Da=10"3)

{5t

L
1073

AX

"

A
102 107

F1G. 3. Effect of mesh size on the flow pattern.
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98/3X=0
8:0 8=
- Interface
1HO x 20 mesh
X
l v 98/9X =0

FiG. 5. Finite-element mesh for calculation.

most of the fluid moving downward adjacent to the cold
wall in the fluid region goes away from the wall at x/H
= 0.5 and then moves along the interface towards the
hot wall. However, a part of the fluid penetratesinto the
porous medium. Thus, there are two flow modes for this
system: one is a circulation rotating counter-clock-
wise in the fluid region only and the other is a circu-
lation with the same rotation over the entire region.
These flow modes have been also observed in the
range 5 x 108 < Ra; < 3 x 107 for Da = 3.5x 10~ %and
Ao/As = 1.28 in previous experiments [13].

The circulation rate in the fluid region only, ¥, is
almost identical for Darcy numbers considered here,
but increases with the Rayleigh number. While the
circulation rate over the entire region, ¥, decreases
with decreasing the Darcy number. Figure 7 shows the

ratio of the circulation rate over the entire region to

- that in the fluid region only. This ratio means a rate

of flow penetration from the fluid region into the
porous region. The circulation ratio increases with
the Rayleigh number, but its relation is not linear. In
the range of Rayleigh number considered here, the
circulation ratio decreases at a rate which corresponds
to a decrease in the Darcy number.

Figure 8 shows the variation of isotherms with the
Darcy number at Ra = 10°. The isotherms are almost
identical for any Darcy number in the fluid region, but
are different in the porous region. This difference is
dependent on the variation of the flow penetration rate
with the Darcy number.

3.2. Heat transfer rates for various Darcy numbers
In the present study, the average Nusselt number is
defined as

actual heat transfer rate

Nuy; = -
T heat transfer rate by conduction when the

entire enclosure is filled with the fluid alone
(21)

and is given in terms of variables of this study as follows

H' W
Nu; = (W/H) {(le/lf)f (90,/0Y)dX
0

(22)

Y=0

H/W

+ j (06/0Y) dX}
H'|W

where the temperature gradient is evaluated at the cold

wall, Y = 0.

Figure 9 shows the relation between the Nusselt
number and the Rayleigh number. The Nusselt number
makes little difference for all Darcy numbers studied
and it is smaller than that for the fully-fluid enclosure
indicated by the solid line in this figure at high Rayleigh
numbers. Normally the Nusselt number increases with
the Darcy number and in turn with the permeability.
However, the numerical results are contrary to this
expectation. So the local Nusselt numbers at the cold
wall are shown in Fig. 10for Da = 107 and 10~ °. The
local Nusselt number for Da = 1073 is larger than that
for Da = 10~ % in the fluid region, while it is smaller in
the porous region. The difference in the local Nusselt
number for various Darcy numbers is due to a
remarkable difference in the flow penetration rate as
shown in Fig. 7. However, this difference is almost
cancelled when the local Nusselt number is averaged
along the cold wall to obtain the averaged Nusselt
number.

For such a system consisting of both the fluid and
porous regions, the interaction of the natural
convection for each region has a strong effect on the
flow and temperature fields. In order to estimate
quantitatively this interaction, we calculate the
apparent Nusselt number Nu; when the natural
convection occurs independently in the fluid and
porous regions, corresponding to that when an
impermeable and adiabatic partition is placed at the
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FIG. 6. Variation of streamlines with Rayleigh number for Da = 1073,
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F1G.7. Variation of flow penetration with Rayleigh number for
three different Darcy numbers.

interface. Nug is calculated by the following equation
Nue = (H'/H)(A./A)Nu} +(1 - H'/H)Nut. (23)

Figure 11 shows the ratio of Nu, to Nu,. This ratio of
Nusselt number decreases with increasing the Rayleigh
number. In particular this characteristic becomes
significant with an increase in the Darcy number. Thus
a decrease in the Nusselt number ratio with increasing
Rayleigh number is closely related to the flow penetration
rate as shown in Fig. 7.

4. EXPERIMENTS

Since the experimental equipment and procedure
have already been described comprehensively [13],
they will be reviewed here only briefly. A rectangular
enclosure, 5 cm in width and 30 cm in height, whose
opposing vertical walls were kept at different tem-
peratures while the upper and lower walls were insu-
lated was used. Silicone oil (Pr; ~ 8000) was used as
the fluid, and the porous medium was composed of
glass beads of an average diameter of 3.1 mm. The
experiment was carried out for the porous portion of
the enclosure H’'/H = 0.5 in the range 5 x 10* < Ra,
< 3x10°. We observed the flow pattern by the tracer
consisting of iodine solution or small particles, and also
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Ro =105 Da=10"2
Y Ve

Dg = 107*

895

Da =107

F1G. 8. Variation of isotherms with Darcy number for Ra = 10°.

measured the temperature distribution and the heat
transfer rate through the enclosure.

Figure 12(a) shows a photograph of the flow
visualization in the fluid region. A circulation over the
fluid region and twin secondary circulations are clearly
recognizable. On the other hand, in the porous region,
the tracer consisting of iodine solution injected through
a port of the lower wall of the enclosure spread over the
porous region at a low speed and thus the flow in the
porous region is not clearly recognizable. Figure 12(b)
shows the corresponding numerical streamlines by the
analytical model described above. The agreement

10
== Fully fluid enclosure
Do
s 1073
3 O 107% Ae/Xs=)
-5
O o

|
103 104 105
Rag

F1G. 9. Variation of Nusselt numbers with Rayleigh number
for three different Darcy numbers.

between the experiment and the analysis is good in the
fluid region but is not clear in the porous region. The
reason for this is that the flow rate in the porous region
is much smaller than that in the fluid region, as seen
from the ratio of ¥, to ¥; indicated in Fig. 12(b).
Figure 13 shows a comparison of experimental and

6
4
/4
//
/
// Da
N — 1073
,’ Fluid region ___ |05
7
x L _. foe= 5 x 10°
\ )\e / X' =]
} Porous region
2k 1
i
1
|
|
|
]
M !
o 5 10
Ny,

Fi1G. 10. Local Nusselt number distributions for two different
Darcy numbers.
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F1G. 11. Variation of Nusselt number ratios with Rayleigh
number for three different Darcy numbers.

numerical temperature distributions at each horizontal
section in the enclosure. The numerical distributions
are found to be in very good agreement with the
experimental data for both the fluid and porous
regions. The temperature distribution near the lower
wall (x/H = 0.02) is identical with that of the heat
conduction. This result indicates that the flow rate in
the porous region is extremely small.

Figure 14 shows a comparison of experimental and

T. NISHIMURA et al.
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A }Experimentql
A data
—= Numerical

solution

y/w

A Fluid region
& Porous region

Conditions }
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FiG. 13. Comparison of experimental and calculated
temperature distributions.
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F1G. 12. Comparison of experimental and calculated flow patterns.
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H/W=6, Da=35 x10"
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105 108

Ra,

104

FiG. 14. Comparison of experimental and calculated Nusselt
numbers.

numerical Nusselt numbers. The agreement between
the experiment and the numerical solution is good ; the
experimental data are also in agreement with the
correlation indicated by the dotted line—an extrapola-
tion of the correlating equation for higher Rayleigh
numbers (7.3 x 10° < Ra; < 2.6 x 107) presented by the
previous experimental study [13].

5. CONCLUSIONS

Natural convection heat transfer in a rectangular
enclosure horizontally divided into fluid and porous
regions was analyzed numerically. The Navier—Stokes
equation and Brinkman’s equation were used for the
fluid motion in the fluid region and for that in the
porous region, respectively. These equations were
solved by the finite-element method. The flow and
temperature fields varied with the Rayleigh number
and the Darcy number. In particular, the rate of flow
penetration from the fluid region into the porous region
considerably varied with the Darcy number. The
numerical results agreed well with the experiments.

In this study, the validity of the analytical model has
not yet been completely performed, because the
comparison between the analytical model and the
experiment is made under a condition in which the heat
transfer in the porous region is mainly dominated by
heat conduction. In the future it is hoped that the
numerical calculation will be expanded to higher
Rayleigh numbers than those studied in this work.
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ANALYSE NUMERIQUE DE LA CONVECTION NATURELLE DANS UNE ENCEINTE
RECTANGULAIRE DIVISEE HORIZONTALEMENT EN DES REGIONS POREUSE ET
FLUIDE

Résumé —On décrit une étude analytique de la convection naturelle dans une enceinte rectangulaire divisée
horizontalement en deux régions poreuse et fluide. L’équation de Navier-Stokes gouverne le mouvement du
fluide dans la région du fluide, tandis que 'extension de 1a loi de Darcy est supposée étre valable dans la région
poreuse. Ces équations sont résolues par une méthode aux éléments finis dans le domaine 10* < Ra < 10° et
1073 < Da < 1075, L’expérience est conduite pour une enceinte rectangulaire couplée avec du silicone et des
billes de verre. On montre que la configuration de I'écoulement, la distribution de température et le nombre de
Nusselt obtenus par le calcul numérique prédisent correctement les données expérimentales.

NUMERISCHE UNTERSUCHUNG DER NATURLICHEN KONVEKTION IN EINEM
RECHTECKIGEN HOHLRAUM MIT WAAGERECHTER TRENNUNG ZWISCHEN
SCHUTTUNG UND FLUID

Zusammenfassung—Der Artikel beschreibt eine analytische Untersuchung des Warmeiibergangs bei lami-
narer natiirlichen Konvektion in einem rechteckigen Hohlraum mit horizontaler Trennung von Schiittung
und Fluid. Die Navier-Stokes-Gleichungen beschreiben die Bewegung des Fluids im Gebiet des reinen
Fluids, wihrend Brinkman'’s Erweiterung des Darcy-Gesetzes als giiltig fiir die Schiittung angenommen
wird. Die Gleichungen werden mit einem Finite-Elemente-Verfahren gelost im Bereich von 10° €< Ra, < 10°
und 10-°< Da €10°. Eine experimentelle Untersuchung wird ebenfalls durchgefiihrt an einem rech-
teckigen Behdlter, der mit Silikondl und Glaskugeln gefiillt ist. Es wird gezeigt, dal das Stromungsbild,
die Temperaturverteilung und die Nusselt-Zahl, die man aus den numerischen Berechnungen erhilt, die
experimentellen Werte zufriedenstellend vorhersagen.

YYICTEHHBIA AHAJIN3 ECTECTBEHHON KOHBEKLIMU B MIPAMOYTOJILHOM
OBBEME C I'OPU30OHTAJIBHBIM AEJEHMEM HA XHWJIKVYIO N TTIOPUCTVYIO OBJIACTH

AHHOTAUMA—AHATATHYECKH M3y4aeTCsl JTAMHMHAPHLI eCTECTBEHHOKOHBEKTHBHBIA TEILIONEpEHOC B 1ps-
MOYI'OJIbHON MOJIOCTH ¢ FOPH3OHTAJIbLHBIM IeeHHEM Ha KHAKYIO H MOPHCTYIO obnacTH. JIBkeHHE B
obnacTy XMAKOCTU ompeensiercsi ypasHeHueM Hasbe—CrTokca. B nopucroil o6facTH npHMeHseTcs
06061enne BpuHkmana s 3akona Japc. YpaBHEHUs PELIAIOTCA METOAOM KOHEYHBIX 3EMEHTOB PH
10> < Ra; < 10° u 107° < Da <1073 DKCIEPHMEHTBI MPOBOJSTCH C IPAMOYIOJIBHOM €MKOCTbIO,
3aT0JIHEHHOM CHIIMKOHOBBIM MACJIOM 4 CTEKJISHHBIMH LIapukaMH. [I0Ka3aHO, 4TO PACCYMTAHHBIE PEXUM
TeYeHHs, PacTIpeiesieHie TEMIEPaTyphl H ncio HyccebTa YIOBIETBOPHTENLHO COOTBETCTBYIOT JKCIIE-
PHMEHTANILHEIM JaHHBIM,



